
International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 791
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

A Survey on Effort Estimation of Object-oriented
Programming Systems from use case diagrams

Sai Sruthi

Abstract— In object-oriented analysis, use case models depict the utilitarian prerequisites of a future programming framework. Estimating
the framework could be carried out by measuring the size or intricacy of the use cases in the use case model. The size can then serve as
info to an expense estimation technique or model, so as to process an early gauge of expense and exertion. Evaluating programming with
use cases is still in the early stages. This paper portrays a product estimating and expense estimation strategy dependent upon use cases,
called the 'Use Case Points Method'. The strategy was made a few years back, however is not well known. One of the reasons may be that
the strategy is best used with elegantly composed use cases at a suitable level of practical subtle element.

Index Terms— Conversion Factor, EFactor, LOC, TFacor, Use Case Point (UCP), UML, UAW, UUCW

.

—————————— ——————————

1 INTRODUCTION
hile working at Ericsson in the late 1960s, Ivar Jacobson
formulated what later got known as use cases. Ericsson
at the time displayed the entire framework as a set of

interconnected pieces, which later got to be "subsystems" in
UML. The squares Ire found by working through formerly
specified 'movement cases', later known as use cases. Jacobsen
left Ericsson in 1987 and made Objectory AB in Stock- holm,
where he and his partners created a procedure item called
'Objectory', a contraction of 'Article Factory'. A graphing
method was produced for the idea of the use case. In 1992,
Jacobson concocted the product philosophy OOSE (Object
Oriented Software Engineering), a use case driven technique,
one in which use cases are included at all phases of improve-
ment. These incorporate dissection, plan, acceptance and test-
ing. In 1993, Gustav Karner created the Use case Points strate-
gy for evaluating article arranged programming. In 1994,
Alistair Cockburn built the 'On-screen characters and Goals
theoretical model' while composing use case guides for the
IBM Consulting Group. It gave direction as how to structure
and compose use cases.

Use case modelling is a prevalent and broadly used method

for catching and depicting the useful prerequisites of a product
framework. The architects’ of UML suggest that engineers take
after a use case driven improvement process where the use
case model is used as info to outline, and as a premise for
confirmation, acceptance and different manifestations of
testing.

A use case model characterizes the practical extent of the
framework to be created. The utilitarian extension therefore

serves as a premise for top-down appraisals. A strategy for

utilizing use case models as a premise for evaluating
programming advancement exertion was presented by Karner.
This technique is affected by the capacity focuses strategy and
is focused around closely resembling use case focuses. The use
of an adjusted form of the use case focuses technique was
discovered that characteristics of a use case model are
dependable pointers of the measure of the ensuing usefulness.
Use case models have additionally been discovered
appropriate as a premise for the estimation and arranging of
undertakings in a product change venture. In any case, I have
been not able to discover contemplates that portray the use
case focuses estimation transform in subtle elements. The point
of this paper is to give a nitty gritty depiction of the technique
used and encounters from applying it.

Estimation of software testing effort is a standout amongst
the most essential parts of the whole testing life cycle transform
as it is specifically relative to the cost of the venture. Estimation
has an effect on all the 3 most essential parts of a client need –
Time, Cost and Quality. A right estimation helps in conveying
the items in correct time. If the estimation is not correct it might
lead to delay in deliverables, increased cost and inappropriate
results. An imperative essential for applying a use case based
estimation technique is that the use cases of the framework
under development have been distinguished at a suitable level
of subtle element. The use case model may be organized with a
shifting number of performing artists and use cases. These
numbers will influence the estimates. The division of the
utilitarian prerequisites into use cases is, nonetheless, outside
the extent of this paper.

2 VARIOUS ESTIMATION METHOD
 John Smith of Rational Software depicts a technique
showing a system for estimation dependent upon use cases
made as lines of code. There does not appear to be any more
research finished on this strategy, in spite of the fact that the
device 'Gauge Professional', which is supplied by the Software
Productivity Center Inc, and the apparatus "Costxpert" from

W

————————————————
• Author Sai Sruthi is currently pursuing masters degree program in infor-

mation technology in SRM University, India. E-mail:
saisruthi9.prasanthi@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 792
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Marotz Inc. produce assessments of exertion for every use case
figured from the amount of lines of code. There are heaps of
routines accessible at this moment for testing estimation like
Test Case Points, Function Point and so forth. Use Case tech-
nique is likewise picking up prevalence for evaluating pro-
gramming exertion. It can used extremely useful in case of
offering ventures as the use cases are one of the first or fre-
quently the main data accessible to start with of a product ven-
ture.
 Elective routines for estimation dependent upon use cases
are on the groundwork for including capacity focuses, which
turn may be utilized to acquire an evaluation of exertion and
an alternate is to gauge the amount of lines of code (LOC) in
the completed framework. This number of LOC is accordingly
utilized as the support for an assessment. These two systems
show up more perplexing than the one I have utilized as they
individually make presumptions on the relationship between
use cases and capacity focuses, and between use cases and the
amount of LOC in the completed framework. These supposi-
tions have not been tried. The focal point of these strategies,
nonetheless, is that they may misuse the far reaching
knowledge with estimation utilizing capacity focuses or lines
of code.
 Upgrade measures the measure of the issue including and
ordering extension components a task. The set of use cases in
the undertaking's use case model is one sort of degree compo-
nent. Different potential outcomes are, for instance, the task's
classes, parts and pages. Qualifiers are connected to every de-
gree component. The many-sided quality qualifier characteriz-
es every degree component as straightforward or complex.
The apparatus gives a set of default measurements, extrapo-
lated for a fact on more than 100 ventures. The client can like-
wise redo metric information to transform evaluations bal-
anced for an association. Advance composes the degree com-
ponents and metric information to register an appraisal of ex-
ertion and expense. I plan to assess this apparatus all the more
completely. My impression is that the device obliges adjust-
ment to the specific association to give a sensible evaluation.
In addition, the expense of procurement and preparing makes
it less open than the technique with copartnered spreadsheet
that I have utilized.

3 USE CASE METHOD
The use instances of the framework under development must

be composed at a suit- capable level of point of interest. It must be
conceivable to include the transactions the use case depictions to
characterize use case unpredictability. The level of point of
interest in the use case depictions and the structure of the use case
has an effect on the accuracy of assessments dependent upon use
cases. The use case model might likewise hold a shifting number
of performing artists and use cases, and these numbers will again
influence the appraisals. This method is very Ill suited for bidding
projects as most of the time use case is the only information
available at the beginning of a project. The Use Case point method
considers the technical and environmental factors which can be
refined further to achieve more accurate estimates. This can be

used to illustrate productivity benchmarks across an organization
since it is independent of test cases.

The principal playing point to evaluating with use case fo-
cuses is that the methodology might be robotized. Some use
case administration apparatuses will naturally tally the
amount of use case focuses in a framework. This can spare the
group an incredible arrangement of evaluating time. Obvious-
ly, there's the counter contention that an appraisal is just com-
parable to the exertion put into it. This scientific method gives
more accurate and precise results over any traditional method
available for effort estimation.

A focal point is that it ought to be conceivable to secure an
authoritative normal usage time for every use case point. This
might be extremely of service in determining future timeta-
bles. Lamentably, this depends intensely on the supposition
that all use cases are reliably composed with the same level of
point of interest. This may be a false supposition, particularly
when there are different use case creators. Here no any detail
requirements are required for estimation.
 An interest to utilize case focuses is that they are an excep-
tionally immaculate measure of size. Great estimation meth-
odologies permit us to independent evaluating of size from
determining length of time. Use case focuses qualify in this
respect in light of the fact that the measure of a provision will
be autonomous of the size, ability, and knowledge of the
group that actualizes it.

4 VARIOUS FACTORS IN USE CASE POINT
METHOD

 This area gives a short review of the steps in the use case
point method. This estimation technique obliges that it ought
to be conceivable to include the amount of transactions each
one use case. A transaction is an occasion happening between
a performing artist and the framework, the occasion being
performed totally or not in the slightest degree. The First step
for every type of estimation is to calculate the size of activity
to be performed. Second is to calculate Effort estimation.

1. Size Estimation
The four steps of the use case point technique are as takes af-
ter:
1.1. The performing artists in the use case model are classified
as basic, normal or complex. A basic on-screen character
speaks to an alternate framework with a characterized API; a
normal performing artist is an alternate framework associat-
ing through a convention, for example, TCP/IP; and a com-
plex performer may be an individual communicating through
a graphical user interface or a site page. A weighting variable
is relegated to every performer class:
• Simple: weighting factor 1
• Average: weighting factor 2
• Complex: weighting factor 3
The total unadjusted actor weight (UAW) is calculated count-
ing the number of actors in each category, multiplying each
total by its specified weighting factor, and then adding the
products.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 793
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

1.2. The use cases are additionally ordered as straightforward,
normal or unpredictable, contingent upon the amount of
transactions, incorporating the transactions in elective streams.
Included or developing use cases are not recognized. A
straightforward use case has 3 or fewer transactions; a normal use
case has 4 to 7 transactions; and a complex use case has more than
7 transactions. A weighting component is alloted to each one use
case classification:
• Simple: weighting factor 5
• Average: weighting factor 10
• Complex: weighting factor 15
The unadjusted use case weights (UUCW) is ascertained checking
the amount of use cases in every class, increasing every
classification of use case with its weight and including the items.
The UAW is added to the UUCW to get the unadjusted use case
focuses (UUPC).
UUCP = UAW + UUCW

1.3. The use case points are adjusted based on the values assigned
to a number of technical factors (Table 1) and environmental
factors (Table 2).

TABLE I. TECHNICAL COMPLEXITY FACTORS

Technical
Factor Description weight

 T1 Distributed System 2
 T2 Performance 1
 T3 End User Efficiency 1
 T4 Complex Internal Processing 1
 T5 Reusability 1
 T6 Installability 0.5
 T7 Usability 0.5
 T8 Portability 2

TABLE II. ENVIRONMENTAL FACTORS

Environment
Factor

 Description Weigh
t

F1 Familiarity with Life-Cycle
model used

1.5

F2 Application domain experience 0.5
F3 Experience with development

methodologies used
1

F4 Analyst capability 0.5
F5 Team motivation 1
F6 Stability of requirements 2
F7 Use of part-time team members -1
F8 Use of difficult programming

language
-1

Each one variable is doled out a quality between 0 and 5 rely-
ing upon its accepted impact on the venture. A rating of 0

means the element is immaterial for the undertaking; 5 would
not joke about this is vital. The Technical Factor (TCF) is com-
puted reproducing the quality of each one variable (T1 – T13)
in Table 1 by its weight and after that adding all these num-
bers to get the whole called the Tfactor. At long last, the ac-
companying recipe is connected
TCF = 0.6 + (.01*TFactor)
The Environmental Factor (EF) is calculated accordingly by
multiplying the value of each factor (F1 – F8) in Table 2 by its
weight and adding all the products to get the sum called the
Efactor. The formula below is applied:
EF = 1.4+(-0.03*EFactor)
The adjusted use case points (UCP) are calculated as follows:
UCP = UUCP*TCF*EF

1.4. Karner proposed a variable of 20 staff hours for every use
case point for a venture assessment, while Sparks states that field
experience has demonstrated that exertion can run from 15 to 30
hours for every use case point.

2. Effort Estimation
2.1. Conversion Factor (CF):

When the span of a venture has been ascertained as far as
Adjusted Use Case Points, the aggregate size needs to be changed
over to exertion by duplicating it with a conversion factor. The
Conversion factor is characterized as the aggregate testing time
needed to test one Use Case Point. The Conversion factor might
be inferred by figuring out strategy i.e. by putting the recorded
task information in the estimation layout for different
technologies. It is 20(hrs) for Java based applications.
Final Effort = UCP * Conversion factor

5 CASE STUDY
1. Actor weight

S.N Actor Name Weight Factor

1. Actor 1 Complex 3

2. Actor 2 Medium 2

3. Actor 3 Simple 2

4. Actor 4 Simple 1
 Total = 8

2. Use case weight

S.N Use case
description

Weight Factor

1. Use case 1 Simple 5

2. Use case 2 Complex 15

3. Use case 3 Medium 10

4. Use case 4 Medium 10
 Total = 40

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 794
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 3. Unadjusted Use Case point (UUCP)

 UUCP = Actor weight + Use case weight
 = 8+40
 = 48

4. Technical complexity Factor calculation

S.N Description Weigh
t

Perceived
complexity

Calculated
Factor

1. Distributed
system

2 1 2

2. Performance 1 2 2

3. End user
efficiency

1 3 3

4. Complex
internal

processing

1 4 4

5. Re usability 1 5 5

6. Install-ability 0.5 3 1.5

7. Usability 0.5 2 1

8. Portability 2 1 2
 Total TF = 20.5
TCF= 0.6 + (0.01 * TF)
 = 0.6 + (0.01 * 20.5)
 = 0.6 + 0.205
 = 0.805

5. Environmental complexity Factor

S.N Description Weight Perceived
complexity

Calculated
Factor

1. Life cycle model
used

1.5 2 3

2. Application
domain

0.5 1 0.5

3. Development
methodologies

1 3 3

4. Analyst capability 0.5 5 2.5

5. Team motivation 1 2 2

6. Stability of
requirements

2 5 10

7. Part-time team
members

-1 2 -2

8. Different
programming

language

-1 1 -1

 Total = 18

ECF = 1.4 + (-0.03 * EF)
 = 1.4 + (-0.03 * 18)
 = 1.4 – 0.54
 = 0.86

 6. Calculate final use case points (UCP)
UCP = UUCP * TCF * ECF
 = 48 * 0.805 * 0.86
 = 33.23

 7. Calculating Final Effort

Final Effort (Hrs) = UCP * conversion factor
 = 33.23 * 20
 = 664.6

6 CONCLUSION
I led a study on applying a strategy for assessing pro-

gramming advancement exertion dependent upon use cases,
the use case focuses system. The effects show that this tech-
nique could be utilized effectively since the use case evalua-
tions Ire near the master gauges. In one case it was likewise
near the real exertion. It is in this manner my feeling that the
system may help master information.
 Additionally, my experience is that applying the use case
point strategy in practice is not direct. For instance, the deci-
sion of structure for the use case model has an effect on the
evaluations. There is hence a need for further studies on the
exactness of the assessments when utilizing the use case fo-
cuses technique in distinctive sorts of ventures. I additionally
accept that it might be suitable to explore how the use case
focuses strategy, which gives top-down assessments depend-
ent upon a measure of size, could be joined together with dif-
ferent routines that give bottom up evaluations. The motiva-
tion behind utilizing the estimation strategy examined as a
part of this paper is to give a complete evaluation to all the
exercises. In any case, I accept that a portion of the exercises in
an advancement task don't rely on upon size or use case fo-
cuses. Along these lines, such exercises ought to be assessed in
elective ways and afterward be added to the use case assess-
ment to give a last gauge.

ACKNOWLEDGMENT
This research paper is made possible through the help and

support from everyone, including: parents, teachers, family,
friends, and in essence, all sentient beings. First and foremost, I
would like to thank Professor Dr. Subburaj Ramasamy for his
most support and encouragement. He kindly read my paper and
offered invaluable detailed advices on grammar, organization, and
the theme of the paper. Finally, I sincerely thank to my parents,
families, and friends, who provide the advice and support. The
product of this research paper would not be possible without all of
them.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 795
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

REFERENCES
[1] L.M Alves, “An empirical study on the estimation of software

development effort with use case points”, IEEE 2013.
[2] N.A Ahmed and A.H Ahmed, “Enabling complexity use case

function points on service-oriented architecture”, IEEE 2013.
[3] A.B Nassif, L.F Capretz and M Azzeh, “A Treeboost Model for

Software Effort Estimation Based on Use Case points,” IEEE 2012.
[4] A.B Nassif, “Software size and effort estimation from use case

diagrams using regression and soft computing models”, IEEE 2012.
[5] Qiudong Yu and Chungui Liu, “Application of estimation based on

use cases in software industry”, IEEE 2011.
[6] Ribu and Kirsten, “Estimating Object-Oriented Software Projects

with Use Cases. Master of Science Thesis,” University of Oslo,
Department of Informatics 2001.

[7] J. Smith, “The Estimation of Effort Based on Use Cases”, Rational
Software, White paper. 1999

[8] G. Karner, “Use case points: Resource estimation for objector
projects,” September 1993.

[9] Cockburn and Alistair, “Writing Effective Use Cases”, Addison-
Wesley.
[10] G. Schneider and J. Winters,”Applying Use Cases-A Practical
Guide”,Addison-Wesley.

IJSER

http://www.ijser.org/

	1 Introduction
	2 VARIOUS ESTIMATION METHOD
	3 USE CASE METHOD
	4 VARIOUS FACTORS IN USE CASE POINT METHOD
	5 CASE STUDY
	6 CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

